

Canine parvovirus infection: an update on diagnosis, prevention and treatment

Nicola Decaro, DVM, PhD, Dipl. ECVM

Department of Veterinary Medicine University of Bari Aldo Moro

Canine parvovirus: origin and evolution

FAMILY

PARVOVIRIDAE

M

SUBFAM.

PARVOVIRINAE

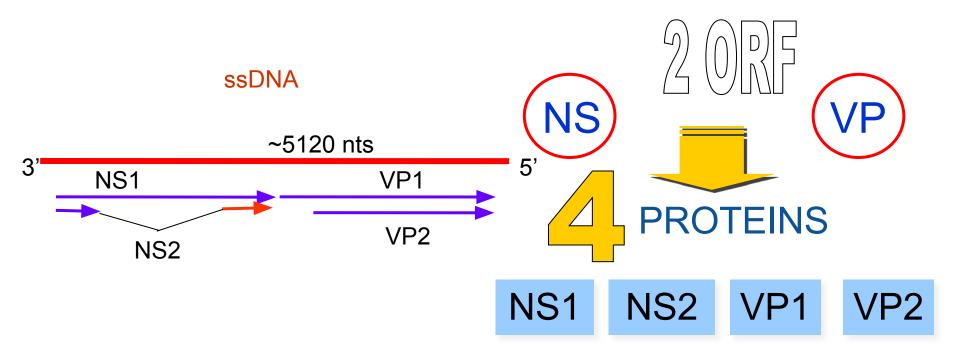
NEW TAXONOMY

GENUS PROTOPARVOVIRUS

CARNIVORE PROTOPARVOVIRUS 1 (CPV-2, FPLV, MPV, BFPV)

ss DNA

GENOME: 5 Kb


SUBFAM.

DENSOVIRINAE

98% ID nt

NON-ENVELOPED PARTICLES

Alternative splicing of the same mRNA

GENETIC VARIABILITY OF THE VP2

CPV-2

Schackelton et al., 2005, PNAS

Substitution rates similar to RNA viruses

1.7 x 10⁻⁴ substitutions per site per year

HIGH INTRINSEC VARIABILITY (ssDNA)

POSITIVE SELECTION PRESSURE (IMMUNITY)

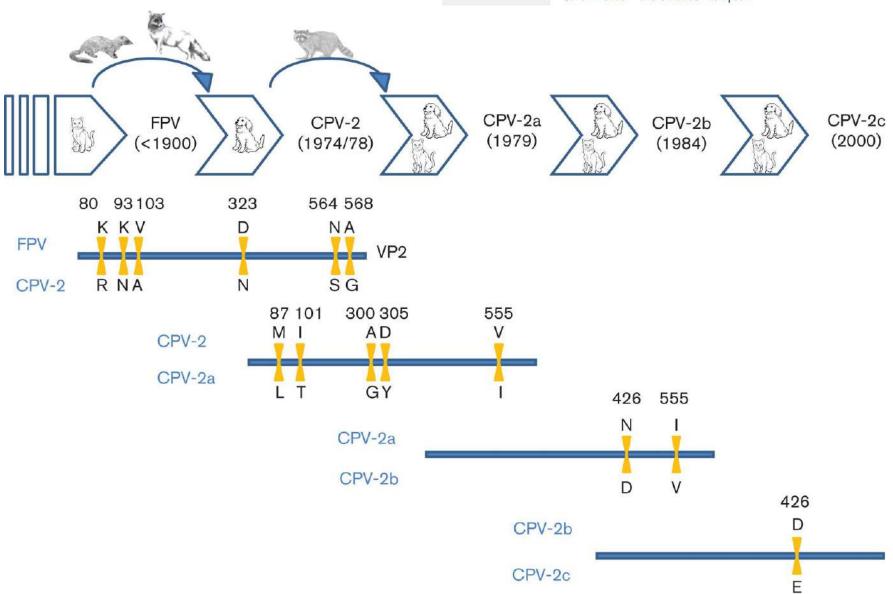
CPV IS STILL EVOLVING

FPV

Schackelton et al., 2005, PNAS

Lower substitution rates 9.4 x 10⁻⁵ substitutions per site per year

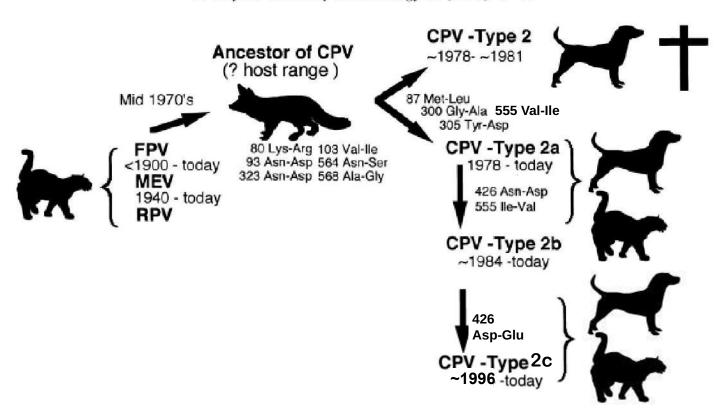
GENETIC STABILITY



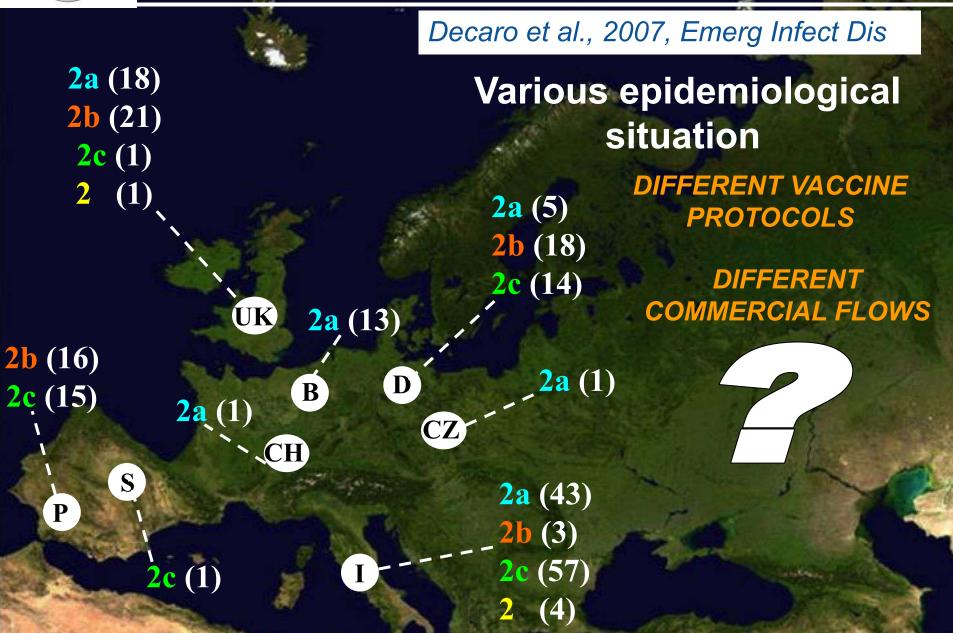
Review

Canine parvovirus: the worldwide occurrence of antigenic variants

Carla Miranda^{1,2} and Gertrude Thompson^{1,2}



Biological features of the CPV variants


HOST RANGE

U. Truyen/Veterinary Microbiology 69 (1999) 47-50 (modified)

TYPE DISTRIBUTION IN EUROPE

CPV TYPE DISTRIBUTION IN THE WORLD

Contents lists available at SciVerse ScienceDirect

Veterinary Microbiology 155 (2012) 1-12

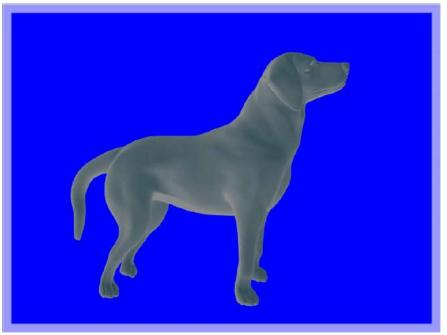
Veterinary Microbiology

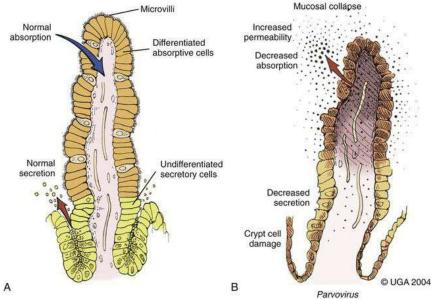
journal homepage: www.elsevier.com/locate/vetmic

 A review of epidemiological and diagnostic aspects, with emphasis on type 2c Canine parvovirus-Review

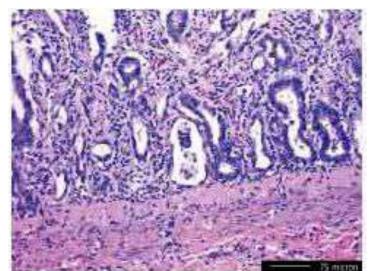
Nicola Decaro*, Canio Buonavoglia

Continent/country	Number of strains detected				
	CPV-2a	CPV-2b	CPV-2		
Europe					
Italy	56	6	62		
Portugal	0	16	15		
Spain	3	1	9		
France	0	9	7		
UK	117	182	1		
Belgium	17	0	9		
Germany	13	18	21		
Greece	81	1	2		
Switzerland	1	0	0		
Czech Republic	1	1	0		
Romania	2	0	0		
Hungary	27	0	0		
Bulgaria	31	9	1		
Slovenia	1	0	0		
Africa					
Tunisia	15	21	14		
North America					
USA	1	36	30		
South America					
Uruguay	1	0	24		
Argentina	9	4	14		
Brazil	37	0	0		
Asia	1777	58578	2,72.7%		
India	37	4	0		
India	b	b	3		
Taiwan	2	34	0		
Korea	119	7	0		
Japan	4	21	0		
China	27	5	0		
Thailand	19	7	0		
Oceania	-000	623	5533		
Australia	41	1	0		




Canine parvovirus: clinical signs and diagnosis





PATHOGENESIS

CLINICAL SIGNS OF PARVOVIROSIS

- HAEMORRHAGIC DIARRHOEA
- VOMITING
- RAPID DEHYDRATION
- FEVER (inconstant)
- LEUKOPOENIA (<3000 WBC/mm³)
- MORTALITY

Clinical course depending on Ab titres at the moment of infection

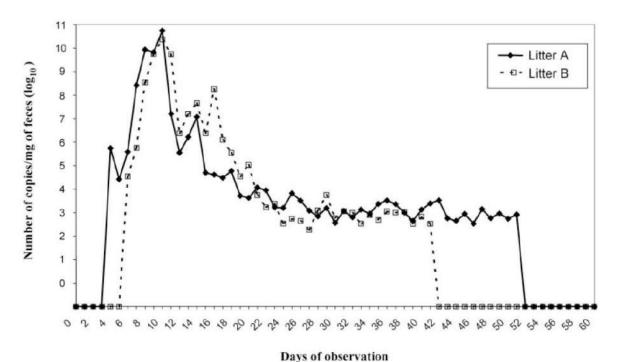
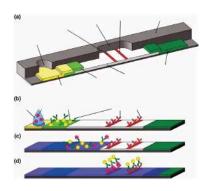
FAECAL SHEDDING

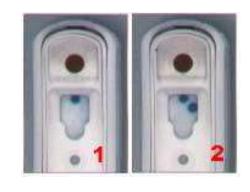
J Vet Diagn Invest 17:133-138 (2005)

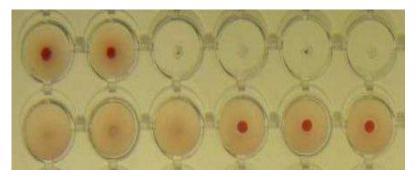
Clinical and virological findings in pups naturally infected by canine parvovirus type 2 Glu-426 mutant

Nicola Decaro,¹ Costantina Desario, Marco Campolo, Gabriella Elia, Vito Martella, Dominga Ricci, Eleonora Lorusso, Canio Buonavoglia

Decaro et al.


Figure 2. Number of copies (median log₁₀ titers) of CPV-2 DNA detected in the fecal samples of the infected pups by real-time PCR.


TRADITIONAL METHODS

ICT

HA

Desario et al., 2005, J Virol Methods

Poorly sensitive in the late stage of infection

Low viral titers

Abs in the

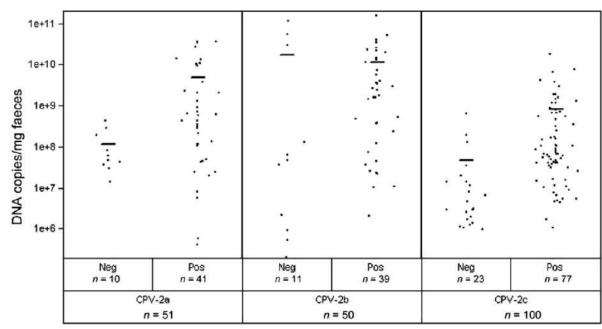
gut lumen

TRADITIONAL METHODS

ICT

Are ELISA-based assays able to detect efficiently CPV-2c?

Rates of test failures increased in the last years paralleling the increased frequency of CPV-2c detection



The Veterinary Journal 184 (2010) 373-375

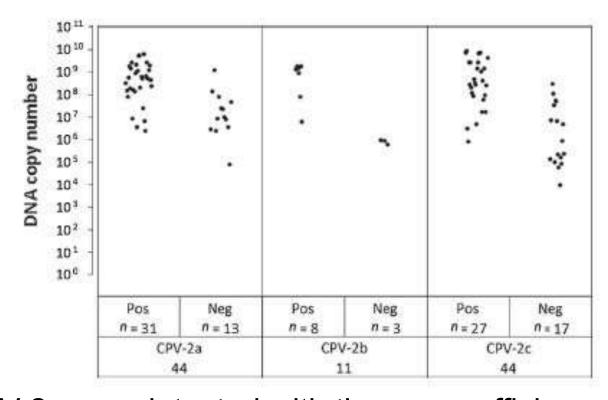
Detection of canine parvovirus type 2c by a commercially available in-house rapid test

Nicola Decaro ^{a,*}, Costantina Desario ^a, Melissa J. Beall ^b, Alessandra Cavalli ^a, Marco Campolo ^a, Anthony A. DiMarco ^b, Francesca Amorisco ^a, Maria Loredana Colaianni ^a, Canio Buonavoglia ^a

CPV-2a, 51 CPV-2b, 50 CPV-2c, 100

Canine parvovirus subtype

CPV-2c was detected with the same efficiency as the other antigenic variants!



The Veterinary Journal xxx (2013) xxx-xxx

Evaluation of an in-clinic assay for the diagnosis of canine parvovirus

N. Decaro ^{a,*}, C. Desario ^a, M. Billi ^b, E. Lorusso ^a, M.L. Colaianni ^{a,c}, V. Colao ^a, G. Elia ^a, G. Ventrella ^a, I. Kusi ^d, S. Bo ^e, C. Buonavoglia ^a

CPV-2a, 44 CPV-2b, 11 CPV-2c, 44

CPV-2c was detected with the same efficiency as the other antigenic variants!

DOES CPV VACCINATION INTERFERE WITH IN-CLINIC ASSAYS?

Vaccine 32 (2014) 3850-3853

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Long-term viremia and fecal shedding in pups after modified-live canine parvovirus vaccination

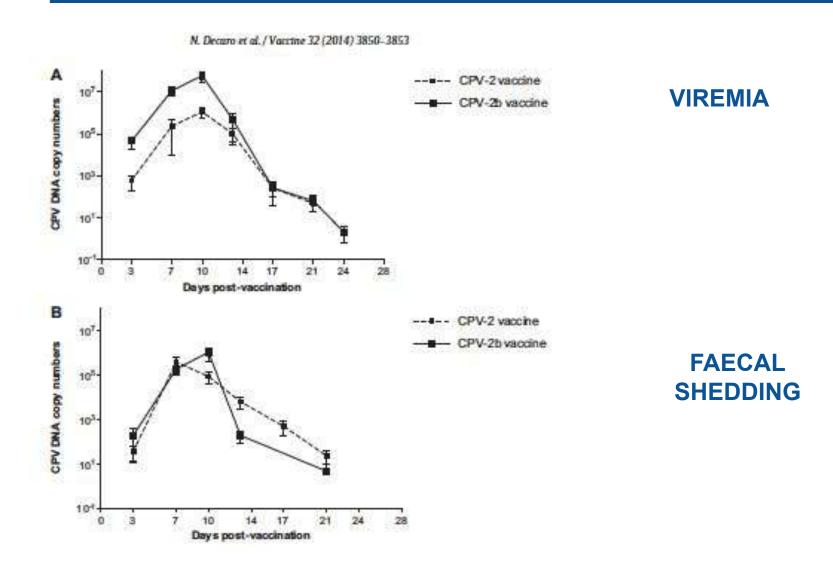
Nicola Decaro^{a,*}, Giuseppe Crescenzo^a, Costantina Desario^a, Alessandra Cavalli^a, Michele Losurdo^a, Maria Loredana Colaianni^{b,c}, Gianpiero Ventrella^a, Stefania Rizzi^{c,d}, Stefano Aulicino^c, Maria Stella Lucente^a, Canio Buonavoglia^a

- * Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
- ^b Istituto Zooprofilattico Sperimentale di Puglia e Basilicuta, Foggia, Italy
- Cospedale Vetermarto Pingry, Bart, Italy
- d Cocker House Allevamento "det Machich", Mola di Bart, Italy

ARTICLE INFO

Article history: Received 20 March 2014 Received in revised form 7 April 2014 Accepted 17 April 2014 Available online 30 April 2014

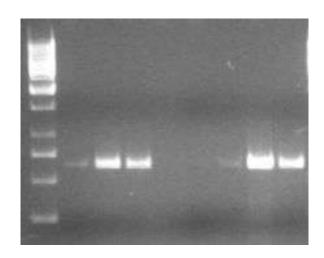
Keywords: Canine parvovirus Vaccination Virus shedding Viremia


ABSTRACT

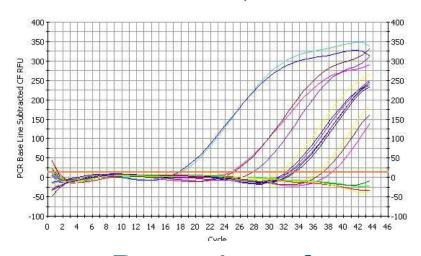
Canine parvovirus (CPV) modified live virus vaccines are able to infect vaccinated dogs replicating in the bloodstream and enteric mucosa. However, the exact duration and extent of CPV vaccine-induced viremia and fecal shedding are not known. With the aim to fill this gap, 26 dogs were administered two commercial vaccines containing a CPV-2 or CPV-2b strain and monitored for 28 days after vaccination. By using real-time PCR, vaccine-induced viremia and shedding were found to be long lasting for both vaccinal strains. Vaccinal CPV-2b shedding was detected for a shorter period than CPV-2 (12 against 19 mean days) but with greater viral loads, whereas viremia occurred for a longer period (22 against 19 mean days) and with higher titers for CPV-2b. Seroconversion appeared as early as 7 and 14 days post-vaccination for CPV-2b and CPV-2 vaccines, respectively. With no vaccine there was any diagnostic interference using inclinic or hemagglutination test, since positive results were obtained only by fecal real-time PCR testing. The present study adds new insights into the CPV vaccine persistence in the organism and possible interference with diagnostic tests.

@ 2014 Elsevier Ltd. All rights reserved.

DOES CPV VACCINATION INTERFERE WITH IN-CLINIC ASSAYS?


NO FAECAL SAMPLES TESTED POSITIVE BY ANTIGEN TESTING

INNOVATIVE METHODS



PCR

Highly sensitive

REAL-TIME PCR WITH TAQMAN

Detection of nucleic acid

Available online at www.sciencedirect.com

www.elsevier.com/locate/vetmic

veterinary microbiology

Veterinary Microbiology 105 (2005) 19-28.

A real-time PCR assay for rapid detection and quantitation of canine parvovirus type 2 in the feces of dogs

Nicola Decaro^{a,*}, Gabriella Elia^a, Vito Martella^a, Costantina Desario^a, Marco Campolo^a, Livia Di Trani^b, Elvira Tarsitano^a, Maria Tempesta^a, Canio Buonavoglia^a

Department of Animal Health and Well-being, Faculty of Veterinary Medicine of Bari, Strada per Casamassima Km 3, 70010 Valenzano, Bari, Italy Bistituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy

Received 14 April 2004; received in revised form 23 September 2004; accepted 29 September 2004

Abstract

We describe a rapid, sensitive and reproducible real-time PCR assay for detecting and quantifying canine parvovirus type 2 (CPV-2) DNA in the feces of dogs with diarrhea. An exogenous internal control was added to control the assay performance from extraction to amplification. The method was demonstrated to be highly specific and sensitive, allowing a precise CPV-2 DNA quantitation over a range of eight orders of magnitude (from 10² to 10⁹ copies of standard DNA). The reproducibility of the CPV-2 real-time PCR assay was assessed by calculating the coefficients of variation (CV) intra-assay and inter-assay for samples containing amounts of CPV-2 DNA spanning the whole range of the real-time PCR standard curve. Then, fecal specimens from diarrheic dogs were analyzed by hemagglutination (HA), conventional PCR and real-time amplification. Comparison between these different techniques revealed that real-time PCR is more sensitive than HA and conventional gel-based PCR, allowing to detect low viral titers of CPV-2 in infected dogs.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Dog; Parvovirus; Real-time PCR; Diagnosis

CPV ANTIBODY DETECTION

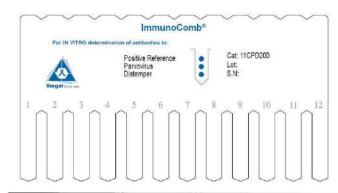

IgM DETECTION

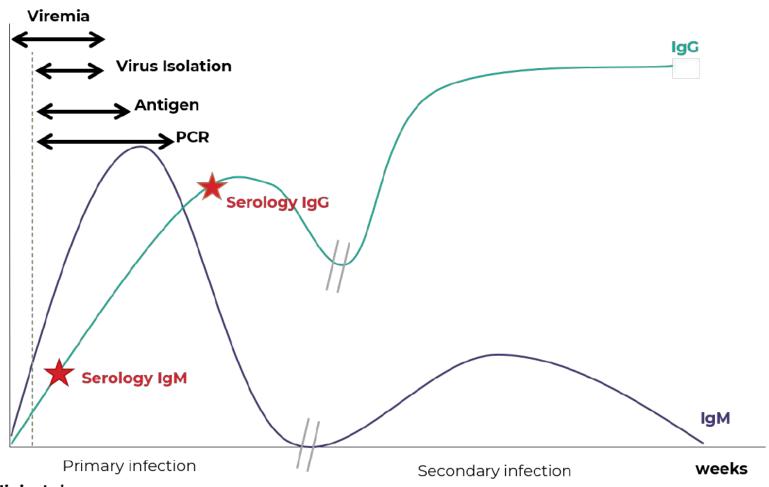
The Veterinary Record, May 10, 2003

Evaluation of a dot ELISA kit for measuring immunoglobulin M antibodies to canine parvovirus and distemper virus

T. WANER, S. MAZAR, E. NACHMIAS, E. KEREN-KORNBLATT, S. HARRUS

FIG 1: Correlation and 95 per cent confidence limits for the relationship between the serum immunoglobulin M (IgM) antibody titres to canine parvovirus (CPV), measured by immunofluorescence and by dot ELISA




TABLE 1: Pearson's correlation coefficients (r) for the relationships between the results of the dot ELISA and immunofluorescence antibody tests for immunoglobulin M (IgM) and immunoglobulin G (IgG) to canine parvovirus (CPV) and canine distemper virus (CDV) in 100 dogs

Parameter	r	P value (two-tailed)		
CPV IgM	0.777	<0.0001		
CDV IgM	0.833	< 0.0001		
CPV IgG	0.900	< 0.0001		
CDV IgG	0.822	< 0.0001		

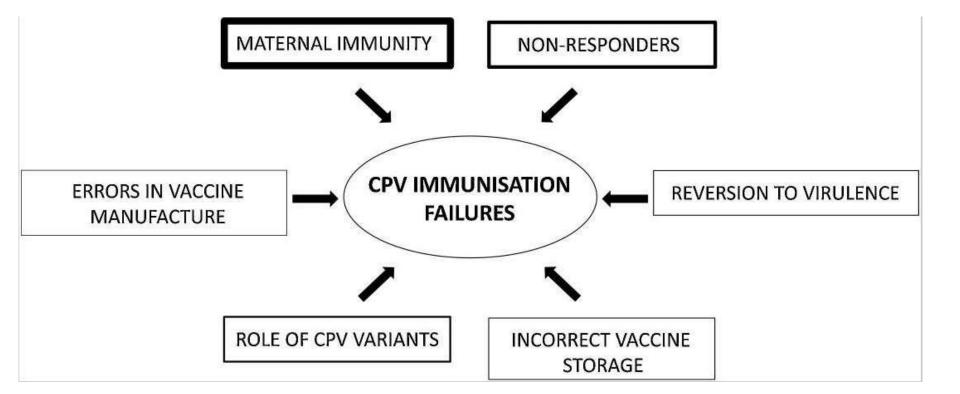
CPV DIAGNOSIS

Onset clinical signs

Canine parvovirus: Vaccination

Contents lists available at ScienceDirect

Veterinary Microbiology



Canine parvovirus vaccination and immunisation failures: Are we far from disease eradication?

N. Decaroa,*, C. Buonavoglia, V.R. Barrs

b City University of Hong Kong, Department of Infectious Diseases & Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, Kowloon, Hong Kong SAR, China

^a Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy

WINDOW OF SUSCEPTIBILITY

Correlation between MDA titres and CPV protection

TITRES <1:20

INFECTION AND DISEASE

1:20< TITRES <1:80

ASYMPTOMATIC FORM

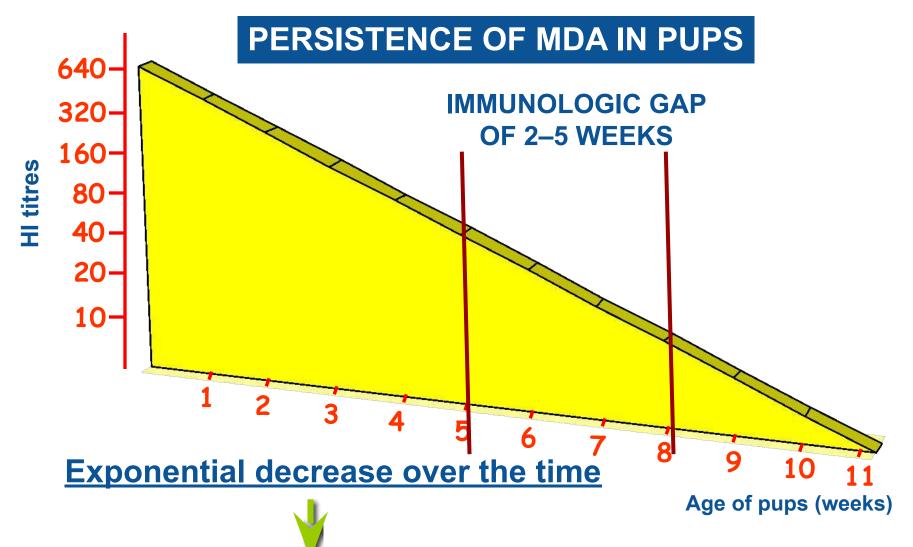
TITRES >1:80

FULL PROTECTION

Correlation between MDA titres and CPV vaccination

TITRES <1:20

ACTIVE IMMUNISATION


TITRES >1:20

INTERFERENCE

WINDOW OF SUSCEPTIBILITY

Half-life of 8.5-10 days

DURATION OF THE WINDOW OF SUSCEPTIBILITY

- BREED (SMALL VS. LARGE)
- Ab TITRE OF THE DAM
- AMOUNT OF COLOSTRUM
- GROWTH RATE

WINDOW OF SUSCEPTIBILITY

HOW TO OVERCOME THE MDA INTERFERENCE?

MDA TITRATION

HI

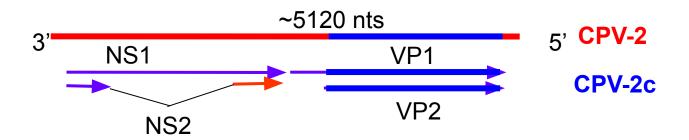
HIGH-TITRE VACCINES

10⁶-10⁷
TCID₅₀/ML

• INTRANASAL VACCINATION (OFF LABEL)

Seroconversion in the presence of MDA titres 1:80-1:160

Martella et al., 2007, Clin Diagn Lab Immunol


WINDOW OF SUSCEPTIBILITY

HOW TO OVERCOME THE MDA INTERFERENCE?

HIGHLY IMMUNOGENIC VACCINES

Seroconversion in the presence of high MDA titres

RECOMBINANT VACCINE

WSAVA VACCINATION GUIDELINES

- 3-4 doses at 2-4 weeks intervals between the 6th and 16th week
 of age
- Booster at 6-12 months
- Revaccination every 3 years

Table 5. Core Vaccination Schedules for Pupples and Kittens First Presented Between 6-9 Weeks of Age and Revaccinated Every 3 or 4 Weeks

Age at first presentation	Core vaccination schedule		
6 weeks	6 weeks, 9 weeks, 12 weeks, 16 weeks then 26 or 52 weeks or		
	6 weeks, 10 weeks, 14 weeks, 18 weeks then 26 or 52 weeks		
7 weeks	7 weeks, 10 weeks, 13 weeks, 16 weeks then 26 or 52 weeks		
	or or		
	7 weeks, 11 weeks, 15 weeks, 19 weeks then 26 or 52 weeks		
8 weeks	8 weeks, 11 weeks, 14 weeks, 17 weeks then 26 or 52 weeks		
	or		
	8 weeks, 12 weeks, 16 weeks then 26 or 52 weeks		
9 weeks	9 weeks, 12 weeks, 15 weeks, 18 weeks then 26 or 52 weeks		
	Of .		
	9 weeks, 13 weeks, 17 weeks then 26 or 52 weeks		

This table provides examples of possible vaccination schedules for puppies and kittens where vaccines are given either every 3 or 4 weeks, as would normally be done in veterinary practice for owned pet animals. Although revaccination every 2 weeks might be used in areas of high infectious disease pressure in some geographical areas, such a protocol is not shown for simplicity of presentation.

After the 26 or 52 week booster vaccine; vaccinate with core products no more frequently than every 3 years (with the exception of feline respiratory virus vaccines for higher risk cats).

SEROLOGICAL TESTING

IN-CLINIC ASSAYS

- Dogs (CPV, CDV, CAV) and cats (FPLV, FCV, FHV)
- DOT-ELISA test
- Execution time: 20-25 min
- Visual reading
- Colorimetric comparison with standards

 $CPV^* = 1:80$ $CDV^* = 1:32$

CAV* = 1:64

FPLV* = 1:80

FCV = 1:32

FHV = 1:16

^{*} THE PRESENCE OF ANTIBODIES FROM ACTIVE IMMUNITY REGARDLESS THE TITRE IS CONSIDERED PROTECTIVE

SEROLOGICAL TESTING

IN-CLINIC ASSAYS

- To evaluate seroconversion after primary vaccination course
- To evaluate the need for the 3-year booster
- Old dogs with a history of multiple vaccinations
- Dogs with allergic/anaphylactic reactions
- Dogs with no history/anamnesis

SEROLOGICAL TESTING

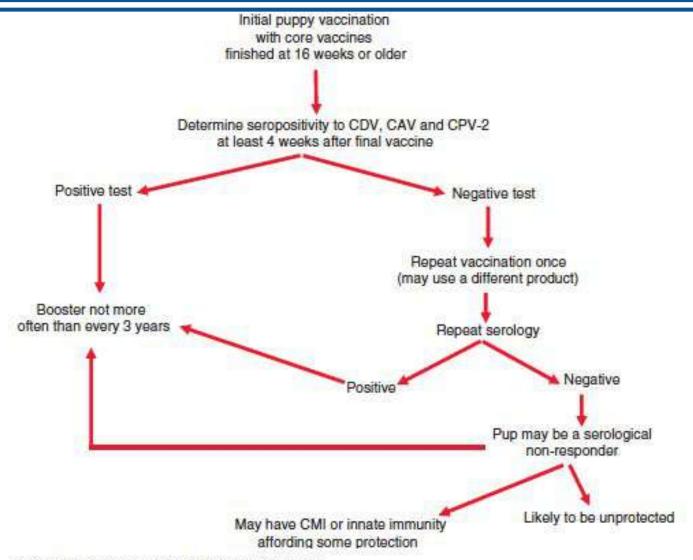


Fig 1. Flow chart for serological testing of puppies

Canine parvovirus: Treatment

MAINLY SUPPORTIVE/SYMPTOMATIC

Vet Clin Small Anim 50 (2020) 1307–1325 https://doi.org/10.1016/j.cvsm.2020.07.008

Update on Canine Parvoviral Enteritis

Elisa M. Mazzaferro, Ms. DVM. Php a,b,*

- Fluid adminstration (lactate Ringer solution)
- Antiemetic drugs
- Gastric protectors
- Whole blood/plasma transfusions
- Enteral nutrition (nasopharyngeal/nasogastric tubes)
- Broad-spectrum antibiotics

Antibiotic choices for use in inpatient and outpatient treatment protocols for canine parvoviral enteritis				
Antibiotic	Dose (mg/kg)/Route/Frequency	In/Outpatient		
Ampicillin	20-40/IV/Q 8 h	Inpatient		
Ampicillin-sulbactam	30–50/IV/Q 6–8 h	Inpatient		
Cefovecin	8/SQ/once	Outpatient		
Cefoxitin	20-30/IV/Q 8 h	Inpatient		
Enrofloxacin	10/IV/Q 24 h	Inpatient		
Metronidazole	10/IV/Q 8 h	Inpatient		

Abbreviations: Q, every; SQ, subcutaneous.

USE OF HYPERIMMUNE PLASMA

JAVMA, Vol 240, No. 6, March 15, 2012

Clinical evaluation of a single dose of immune plasma for treatment of canine parvovirus infection

Ryan F. Bragg, DVM, MS, DACVECC; Amanda L. Duffy, DVM, MS, DACVECC; Frank A. DeCecco, DVM; Donald K. Chung, DVM; Maura T. Green; Julia K. Veir, DVM, PhD, DACVIM; Steven W. Dow, DVM, PhD, DACVIM

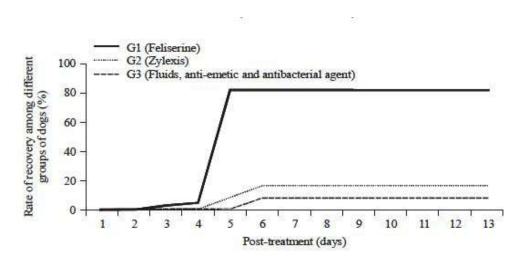
Table 1—Median ± SEM values of descriptive variables for 14 dogs with CPV enteritis treated with 12 mL of CPV-immune plasma (n = 7) or 12 mL of saline (0.9% NaCl) solution (placebo [7]) within 18 hours after hospital admission in addition to standard supportive care.

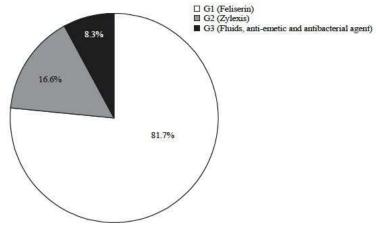
Variable	CPV-immune plasma-treated group	Placebo-treated group	P value*
Age (mo)	3.0 ± 1.52	3.5 ± 0.89	0.95
Body weight at admission (kg)	4.3 ± 3.4	9.5 ± 2.1	0.54
Duration of clinical signs prior to hospital admission (d)	24 ± 7.9	24 ± 4.4	0.68
Dose (mL/kg)	2.79 ± 1.9	1.26 ± 1.25	0.54
Weight loss during hospitalization (%)	2 ± 4.1	0 ± 4.2	0.56
Time in hospital (d)	4 ± 0.53	4 ± 0.79	0.95
Cost of treatment (\$)	1,424 ± 161	$1,665 \pm 279$	0.62

*Represents results of a Mann-Whitney U test; values were considered significant at P < 0.05. To convert mL/kg to mL/lb, divide by 2.2.

USE OF PURIFIED IMMUNOGLOBULINS

Asian Journal of Scientific Research


ISSN 1992-1454


DOI: 10.3923/ajsr.2019.308.315

Research Article

Successful Treatment of Canine Parvovirus Infection in Naturally Infected Puppies

¹Romane Adieb Awad, ^{2,3}Brit Martens and ^{2,3}Safwat Ali Hassan

USE OF INTERFERON-Ω

The Veterinary Record, January 25, 2003

Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled field trial

K. DE MARI, L. MAYNARD, H. M. EUN, B. LEBREUX

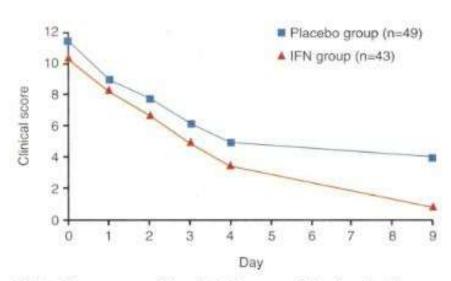


FIG 1: Time course of the clinical scores of the dogs in the interferon (IFN)-treated and placebo groups. The clinical scores for dead dogs were taken into account by using the method of last observation carried forward

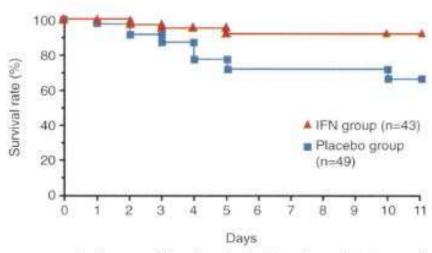


FIG 2: Survival rates of the dogs in the interferon (IFN)-treated and placebo groups

USE OF rcG-CSF

Veterinary Microbiology 231 (2019) 177-182

Use of recombinant canine granulocyte-colony stimulating factor to increase leukocyte count in dogs naturally infected by canine parvovirus

Andrea Armenise^a, Paolo Trerotoli^b, Francesco Cirone^c, Anna De Nitto^a, Costantina De Sario^c, Walter Bertazzolo^d, Annamaria Pratelli^c, Nicola Decaro^c

Table 2

Adjusted means and 95% confidence interval of cells counts. P-values refers to post-hoc adjusted comparison between treated and non-treated groups at each time point.

	Days	Days Group A				Group B			P-value*
		Mean (1000cells/μl)	LCL* (1000cells/µl)	UCL (1000cells/µl)	Mean (1000cells/μl)	LCL* (1000cells/µl)	UCL (1000cells/μl)		
WBC 1 2 3 4 5	1	1.71	1.49	1.96	1.54	1.28	1.87	0.9979	
	2	5.42	4.54	6.54	1.65	1.27	2.17	< 0.0001	
	3	16.42	13.95	19.46	2.92	2.31	3.77	< 0.0001	
	4	24.97	17.89	35.97	5.82	4.40	7.89	< 0.0001	
	5	29.24	20.94	42.11	12.17	9.40	16.08	0.0028	
Lymphocytes	1	0.99	0.79	1.25	0.78	0.61	0.99	0.9139	
	2	2.89	2,40	3.53	0.82	0.64	1.08	< 0.0001	
	3	9.31	7.09	12.51	1.53	1.13	2.10	< 0.0001	
	4	13.46	6.61	32.63	3.22	2.36	4.53	0.0072	
	5	12.62	5.15	41.72	4.05	2.69	6.47	0.4458	
Monocytes	1	0.58	0.46	0.74	0.42	0.32	0.56	0.7987	
THE PART OF STREET	2	2.42	1.96	3.03	0.68	0.50	0.94	< 0.0001	
	3	4.40	3.50	5.62	1.13 0.84	0.84	1.56	< 0.0001	
	4	5.12	2.69	11.34	2.44	1.96	3.09	0.5044	
	5	6.16	3.24	13.61	4.91	3.53	7.07	0.9999	
Neutrophils	1	0.09	0.06	0.14	0.31	0.22	0.46	0.0004	
	2	0.13	0.10	0.16	0.16	0.09	0.29	0.9986	
	3	0.40	0.20	0.87	0.38	0.22	0.66	1	
	4	0.86	0.33	2.91	0.69	0.41	1.24	1	
	5	2.05	0.57	14.63	1.22	0.62	2.74	0.9995	

USE OF rcG-CSF

Veterinary Microbiology 231 (2019) 177-182

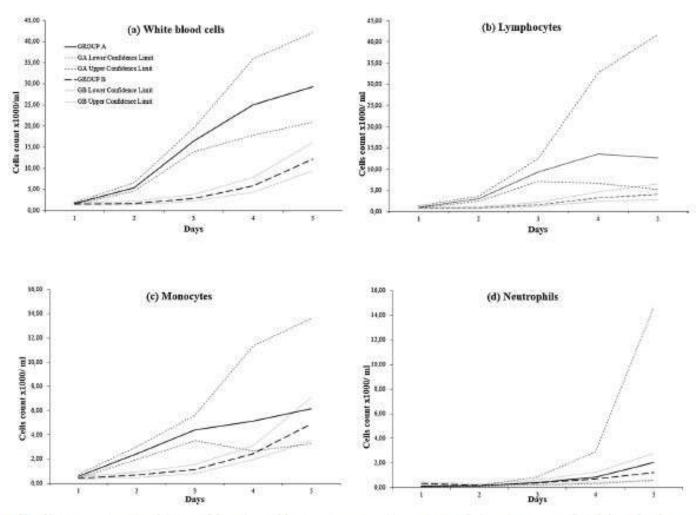


Fig. 1. Profile of least-square means and 95% confidence interval by treatment groups (Group A: treated; Group B: not treated) and days after therapy. a) WBC counts. b) Lymphocytes counts. c) Monocytes counts. d) Neutrophils counts.

THANKS FOR YOUR ATTENTION

BARI, ITALY